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We consider the problem of interpolation by linear combinations of ridge func
tions. A ridge function is a function of the form I(a . x) where I: ~ ---> IR, a E ~''\ {O}
is a fixed vector. and x E ~d is the variable. The solvability of the interpolation
problem is characterized by geometric properties. 'I' 1993 Academic Press. Inc

1. INTRODUCTION

Ridge functions are functions of the form

f(a ·x),

where x = (x I' ..., X d ) E IR d are the variables, a E IR d
\ {O} is a fixed vector

(direction), a· x = L1~ I ajx" and f: IR -+ IR. In other words, the class of
ridge functions is a simple subset of the set of all d-variable real-valued
functions g: IR d -+ IR, given by composition of an inner product (linear
functional on IR d

) with a one variable real-valued function. The literature
abounds with uses of such functions, or combinations thereof, to
approximate d-variable functions. In this paper we consider the problem of
interpolation by ridge functions with fixed directions. Our results are very
partial and represent a first step in an interesting problem

We call the vector a E IR d
\ {O} a direction because for any f: IR -+ IR, the

function f{a· x) is a constant on

ra(rx):= {x:a·x=rx}.
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For each direction a, let

L (a):= {f(a· x): all f: IR --> IR},

219

i.e., in L (a) we vary over all f Given a I, ... , a k
E 1Ri/\ {O}, we consider the

following problem:
Characterize those points Xl, , x m E JRd (any m) such that for every choice

of data lXI, ... , IX m (lXiE JR, i= I, , m), there exists a function

satisfying

i= I, ...,m.

That is, there exist fl' ... , fk: JR --> JR satisfying

k

L f;(a i . Xl) = lXI'
J~I

i= I, ... , m.

In this paper we will restrict ourselves to the case where d = 2
(the plane). We will consider in detail the case k = 3 and also k > 3 for a
significant subclass.

The first non-trivial case k = 2 is well understood; see Section 2 and, e.g.,
Dyn et af. [I]. In this case we may apply a linear transformation so that
the two directions are parallel to the coordinates. Then the problem is
reduced to interpolation by functions of the form

One solution in this case is the following. Given a set of points {x i}, E /' the
interpolation problem is not solvable if and only if there is a subset of 2q
points x I, x 2

, •.•• x2q = Xo such that

if i is even,

if i is odd.

A situation in which interpolation is not possible is shown in Fig. 1.1.
It is our aim to establish an analogous characterization when there are

more than two directions.
Before considering specific cases, we introduce some general notation

and establish a useful reformulation of the problem.

DEFINITION 1.1. Given directions {aJ }J~ I c 1Ri/\ {O }, we say that the set
of points {Xl};"~ Ie IR d has the NI-property (non-interpolation property)
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FIGURE 1.I

with respect to {ai }7~ I if there exist {rx i } ;n~ I C IR such that we cannot find
J~: IR -+ IR, j = I, ..., k, satisfying

k

L J;(ai.xi)=rx i,
i~ 1

i= I, ...,m.

We say that the set {Xi};: I c IR" has the MNI-property (minimal non-
interpolation property) with respect to the {ai}k if {X i1m but no1= 1'" j 1= 1

proper subset thereof has the NI-property.

In other words, set

where

.lit = {g(x l
), ... , g(x m

)}

k

g(x) = I .fi(ai . x)
i~ I

(1.1 )

(1.2 )

and the.fi range over all arbitrary functions from IR to IR. .lit is a linear
subspace of IR m

, and {Xi};"~1 has the NI-property if and only if jf is a
proper subspace of IR m

. The following result easily follows from the above
definitions.

PROPOSITION 1.1. Given directions {ai}5~ I c IR"\{O}, the set
{Xi} 7~ I C IR" has the NI-property if and only if there exists a vector
p= (PI' ... , Pm)E IRm\{o} such that

m

L Pi.fi(a i . Xi) = 0
i~ \

(1.3 )

for all.fi: IR -+ IR and each j= I, ..., k. The set {x'};"~ Ie IR" has the MNI
property if and only if the vector p in (1.3) is unique up to multiplication by
a constant and has no zero component.
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Furthermore, if (1.3) holds for some pE IR m
\ {o }, then there exists a

P' E zm \ {o} satisfying (1.3), i.e., all of .,,,,hose coordinates are integers.

Remark. The existence of p -# 0 satisfying (1.3) is the existence of a non
trivial linear functional supported on the points {Xi} 7'~ 1 annihilating all
functions of the form (1.2). The important part of the proposition is the
result that the coefficients of the functional may be chosen as integers.

Proof Let jt be as given in (1.1). Since Jt is a linear subspace of W',
it does not span IR m if and only if there exists apE IR m

\ {o} such that

m

L pjg(xi)=O
i= 1

for all g of the form (1.2). Obviously this is equivalent to (1.3). The fact
that the MNI-property is equivalent to the uniqueness of the p up to multi
plication by a constant with no zero component, easily follows from similar
reasoning.

It remains to prove that we may choose P' = (P;, ..., P;") E IR m
\ {o} with

P; E Z, i = 1, ..., m, whenever the points {xj}7'~ 1 have the NI-property. To
this end, set

for j= I, ... , k.

The set AJ contains say rJ distinct values in IR with I ~r)~m. Let us denote
these values by y(, ..., y:, i.e.,

J

A - f'J) ",i}
j - II l' ... , I r

J
'

and Y1 -# y~ for 1-# n. Let

j= I, ..., k,

I {Ih,'( v)=
I· 0

if y = yf,
if y = }'~' n -# I,

for 1= 1, ... , rio

When considering functions only on the points Xl, x 2
, ... , xm

, the functions
from L(aJ ) are spanned by h;, 1= 1, ..., r). Consequently, (1.3) is equivalent
to

m

L pjh;(a)· Xi) = 0
i= 1

for 1= I, ..., rio (1.4 )

Thus {x j} 7'~ I has the N I-property if and only if there exists apE W' \ {o }
such that (1.4) holds for 1= I, ..., ri,j= 1, ... , k. We have reduced the inter
polation problem to the matrix problem

pc=o, (1.5 )
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where Pis a vector in IRm and C is an m by r :== LJ= 1 rj matrix. The crucial
property of C is the fact that all of its entries, i.e., the h~(aj . Xi), are O's and
1's and no row or column of C is identically zero. Since Eq. (1.5) has a
non-trivial solution P, and all entries of C are integers, it follows from
Cramer's rule that there exists a non-trivial solution p', all of whose entries
are integers. I

For later use we will rewrite (1.4). This equation implies that

(1.6 )

if the sum runs over all indices i for which Xi E Fa,(yn.

Remark. We want to emphasize that our problem is one of characteriz
ing sets of points {x i} 7'~ 1satisfying (1.6) for some P,., 0, for given aI, ..., ak,
and we may totally disregard the interpolation problem.

Remark. We associate a (non-directed) graph to a set {Xi}7'~ I with the
NI-property. The points Xl, x 2

, .••, x m are the vertices of the graph. A pair
(Xi, x") is an edge of the graph if Xi, x"EFaJ(cc) for some), 1~)~k, and
some 'X E IR. If the points have the MNI-property, then at least one edge in
each of the k directions is adjacent to each vertex. This is a direct conse
quence of (1.6). If we have a set of points with at least one edge in each
of the k directions adjacent to each vertex (d == 2, k ~ 3), then it does not
necessarily follow that these points have the MNI (or NI-) property.

This paper is organized as follows. In Section 2 we review the results in
the cases k = 1 and k = 2. In Section 3 we consider any k and identify those
{Xi};:: I for which interpolation is not always possible over a significant
subclass. In Section 4 we detail the case k = 3, and see how, in fact, the
problem differs from that suggested in Section 3.

2. THE CASES k = 1 AND k = 2

For k = I the problem and its solution are simple. Given a E IR d
\ {O}

(d ~ 2), what are conditions on the points {Xi} 7'~ I in IRdsuch that for every
choice of el), ... ,'Y. m there exists a function f: IR -+ IR such that

i= 1, ..., m?

The answer is that such functions exist if and only if

a· x',., a· x' for all r'" s.
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For k=2 we restrict ourselves to d=2. Here the problem and its solu
tion were essentially given in Dyn et al. [1]. The motivation of that paper
was different, and in fact the paper deals with a slightly different problem.
In [1] the concern is with interpolation at the {Xi};: I using linear com
binations of the functions {llx - xiii I }7'~ I (where 11·111 is the usual II norm
on 1R 2

). However, from this problem the authors were naturally led to a
consideration of interpolation by functions of the form

Formally they considered the special case of the two directions a I = (l, 0)
and a 2 = (0, 1). On the other hand, given any two directions, a linear trans
formation takes them to the vectors a I and a 2 above. Thus the result are
effectively the same for any two directions.

Based on [1], we therefore list a series of conditions characterizing
points {Xi}7'~ 1 c 1R 2 with the NI-property. For completeness, we also
include the proofs. We first need a definition which refers to a generaliza
tion of the situation depicted in Fig. 1.1.

DEFINITION 2.1. A set of points {Vi} f~ 1 is a closed path with respect to
the distinct directions a I and a 2 if p =2q, and for some permutation of the
{Vi} ;~ I (which we assume to be as given)

i = 1, 3, ..., 2q - 1,

and

i = 2, 4, ..., 2q,

where we set v2q + I = Vi.

Geometrically this simply says that the points Vi, •••, vP and Vi again form
a closed path with edges in alternating directions.

THEOREM 2.1. (Dyn et al. [1]). Given two distinct directions a I and a 2 in
1R 2

, the following are equivalent:

(a) The set of points {x i }7'= I has the NJ-property.

(b) There exists a subset {yi};'=I of the {Xi}7'~J such that

for j = 1, 2, and every (J. E IR.

(c) There exists a subset of the {Xi} 7'= I which forms a closed path.
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(d) There exists a subset {Zi};~l oj the {Xi}7'~l and l::iE{-l, I},
i = I, ..., t, such that

t

Il::if(al.z')=O
i~ I

for every Ji : IR -> IR and j = 1, 2.

Proof (a)=(b). Assume that the points {Xi};II~1 have the NI
property. By Proposition 1.1 there exists apE W' \ {O} such that (1.3) holds
for all.~: IR -> IR, and j = 1, 2. Let {yl};=1denote the subset of the {Xi} 7'= 1
for which fJi # O. That is, after renumbering

.\"

I PJi(ai.yl)=O
,~ I

for aIlJi:IR->1R andj=1,2, ~nd P;#O, 1=1, ... ,s. If Fa/(~)n{y'};~1 is
not empty for some a, then it follows from (1.6) that L; P; = 0, where 1runs
over the set of indices for which y' E Fa/(a). Hence, the set contains at least
two points.

(b) = (c). Assume that the set {yT;~ I satisfies (b). Set Zl = yl. By
assumption, there exists a y 1

2, 12 # I, such that

a I . y'2 = a I . ZI.

Set z2 = y12. By assumption, there exists a y'" 13 # 12 , such that

Set z3 = y'J. Continue in this fashion alternating the directions at each step.
Since we can continue this process indefinitely, but there are only s

distinct points y I, ... , y" we must reach a stage where

ZIlE{ZI, ... ,ZIl I}.

Assume Zl = z" where 1< n.
If I and n have the same parity, then the set {z', ..., Zll - I} is a closed path

with repect to a I and a 2
• If 1 and n have opposite parity, then the set

{Zl + 1, ..., Z" I} is a closed path with respect to a I and a 2.

(c)=(d). Let {Zi};~l form a closed path (with vertices ordered as in
the definition of a closed path). Then

2q

I (- 1)' Ji(a j
• Zi) = 0

i= J
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for all £: IR-> IR, and j= 1, 2. For example, for j= 1 we have
a 1

'Z2i-l =a 1 'Z2i, i= 1, ..., q. Thus

i = 1, ..., q

for any fl : IR -> IR, and

2q

L (-l)if](a l .zi )=O.
i= I

A similar argument holds for j = 2.

(d) => (a). This is a consequence of Proposi tion 1.1. I
As a consequence we obtain a characterization of minimal sets with the

N/-property:
A set of points has the MN/-property if and only if the points form a

closed path and W,.,(a)1 ~2for all a andj= 1, 2.

3. DIFFERENCE COMMENSURABLE POINTS

In what follows we assume that we are given k distinct directions
a1, ...,ak in 1R2. For ease of notation, we assume that ai=(sinO j , -cosO;)
where 0= 0 I < (J2 < ... < (J k < n, and x = (x, y). This means that

is a constant along any straight line which intersects the x-axIs with
positive angle (J i' Moreover, set b i := (cos (Ji' sin 0;).

We will first define what we mean by a brick. A brick is determined by
the directions aI, ..., a k and sides of length (J I' ... , (J k «(J, > 0, i = 1, ..., k). It
is a set of 2k points (vertices) in 1R 2 with the NI-property. (In certain non
generic cases, some of these 2k points may coincide.) It is constructed as
follows, up to translation.

Given i E {l, 2, ..., 2k
} consider the representation of i - 1 as a binary

number

640/73/2-8

k

i - 1= L di 2
j

- 1,
j~ I

k

Xi = I dj(Jjb
j

.

i~ 1

(3.1 )
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In the case k = 2 we obtain the vertices of a parallelogram

Xl =0,

For k = 3, the eight points form the vertices of a figure which looks like a
projection of a parallelopiped. Hence the name "brick."

Now, we alternately associate with each of the 2k vertices {Xl};: I a
value £ I E { - I, 1}. Referring to the binary decomposi tion (3.1) we set

£; = ( - 1)",
k

with n; = I djU).
j~ I

(3.2)

As is easily checked, the resulting vector E = (£1' ... , £2') has the property
that

2'

I £ig(X i
) = 0

;= )

for every g of the form (1.2). That is, the vertices of the brick have the
NI-property.

In light of the situation depicted in Fig. 1.1, bricks seem to be so natural
that it is tempting to ask whether all sets of points with the NI-property
contain a subset which can be obtained by taking a (finite) sum of bricks.
We will first explain what we mean by the above statement.

A brick B is determined by 2k vertices and a vector E E { - I, 1}2', as
given above. Given r bricks B I , ... , B f and numbers IX I, ... ,IX" by

we mean the set of points {yl};~\ with associated values h';};~1' where
each yi is in at least one of the Bj , j= I, ..., r, the value i'i is the sum of
IXj£~ for jE{I, ...,r} and IE{I, ...,2k

} such that Xl in Bj is yl, and }'i#O.
A vertex of a brick is ignored if the associated "weight" }'i is zero. Note
two important facts. First,

(3.3 )
i= l

holds for all g as in (1.2) since (3.3) is obtained as a sum of such equations.
Second, among the points {yi};~ I we do not include those points for which
i'i=O. For example, assume k = 2 and we are given two bricks {xi}i~ I and
{Zi} i~ I as given in Fig. 3.1 (with directions parallel to the axes).

If x4 = Z3, then the resulting B I + B2 is given in Fig. 3.2a. If x4 = Z I, then
B1 - B 2 is depicted in Fig.3.2b.
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FIGURE 3.1

In this way some of the points may be cancelled, and we always remain
with a set of points with the NI-property.

Although we did not state it in Theorem 2.1, it is not difficult to
ascertain that for k = 2 every set of points with the NI-property contains a
subset which is obtained by a sum of bricks (which are parallelograms).
The closed paths as specified in Theorem 2.1 (c) are obviously sums of
parallelograms. For k = 3, as we shall see in the next section, this is not
true in general. There we will find more basic structures than merely the
bricks. Nevertheless, for a large class of points {Xi}7'~ I and any k ~ 3, every
set of points with the Nf-property does contain a subset obtained by taking
sums of bricks (of a specific type). We will delineate the additional assump
tion and prove this result.

DEFINITION 3.1. A set of points {x 1, ... , xm
} is said to be difference

commensurable (or has the DC-property) with respect to a direction a if
there exists a number IS> 0 and integers {J1.u} 7,'j ~ I such that

a . Xi - a . Xl = J1.ij IS

for every i, j = 1, ... , m.

That is, the points {xl, ...,x m
} have the DC-property with respect to a

with difference IS if all these points lie on the regular grid lines

a ·x=nlS+ v

for some v fixed, and n = 0, ± 1, ±2, ....

zJ Z4

Z4

xJ
x 2

I Z2

I Xl x 2

Zl z2

a b

FIGURE 3.2

x J ,--- ,

Xl
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Given the directions ai, ..., a k (as above), there are bricks, the vertices of
which have the DC-property with respect to a I with difference o. They are
given by the previous construction where a 1 is arbitrary, but for each of the
other ai's the product a i sin (), is an integer multiple of O. Since we will
add bricks anyway, we will use the elementrary bricks which satisfy
(JisinOi= +0, i=2, ... ,k. Since O<()2<()3< ... <()k<n, the positive sign
could be chosen. This just implies that for each i,

for some miE {O, I, ..., k - I}. (3.4 )

In fact, m i = L:7~2 diU). Moreover (the equation with maximal mil,

a I . Xi = (k - I ) 0 holds for exactly two vertices. (3.5)

To ease notation we call such bricks DC-bricks with respect to a 1 with
difference O. Note that such bricks are uniquely determined up to transla
tion, and the choice of (J I'

We can now state the main result of this section.

THEOREM 3.1. Let ai, ... , a k be k distinct directions in ~2, and assume
that the set {x I, ..., x"'} has the DC-property with respect to ai, some
IE {1, ... , k }, with difference O. Then the points {x I, ... , x"'} have the N1
property with respect to the directions a I, ... , a k if and only if a subset of these
points may be obtained as a finite sum of DC-bricks with respect to al with
difference O.

The proof of Theorem 3.1 heavily depends on the following lemma.

LEMMA 3.2. Assume that the points {yl, ..., y"} have the MNI-property
with respect to the distinct directions ai, ... , ak

. Further assume that these
points have the DC-property with respect to a I with difference O. Then

max lal.yi-al.yil ~(k-I)o.
i. jE {I ..... ,,}

Proof Consider the convex hull q; of the points {t};' ~ I' It is a convex
polygon. From (1.6) it follows that no line of the form ai . x = rx contains
exactly one point from {yi};'~ 1 (for 1~ j ~ k, rx E ~). Therefore, exactly two
edges of the polygon are parallel to bl whenever 1 ~ j ~ k. Hence !6 is a
polygon with exactly 2k edges. For each j E { 1, ..., k}, there are rxj < IX~ such
that r a1 (rx{) and raJ (rx~) contain sides of!6. Let !6 n r a' (C(~) be the straight
line with endpoints yj, Yi, where a I . y~ > a I . yj, j = 2, ..., k. Thus
y~=y~+I,j=2, ... ,k-1. Now
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since the {y I, ... , yn} have the DC-property with respect to a I with dif
ference <5. Summing j over 2, ..., k, we obtain that

a I . y; - a I . y~ ~ (k - 1) <5,

which proves the lemma. I
Proof of Theorem 3.1. One direction is obvious. If a subset of the

{x I, ... , xm
} is obtained as a finite sum of DC-bricks with respect to a' with

difference <5, then the points {x I, ... , x"'} have the Nl-property with respect
to the directions a I, •••, a k

.

It remains to prove the converse direction. For convenience, we assume
that / = 1 and set a:= a 1. From Proposition 1.1 we have existence of a
vector pE ~m\ {O} such that

m

I /3J~(ai.xi)=O
i= 1

for all /;: ~ -+ ~ and j= 1, ... , k.
Let

max {a· Xi - a . xi: i, j E {l, ..., m}, /3i' /3 i # O} = n <5.

From Lemma 3.2, n ~ k - 1. For convenience, assume that

min{a ·x i: /3i#O} =0.

(3.6 )

Let io,joE{l, ...,m} be such that a·x io =a·x/o=n<5, /3io,/3/0 #0, and
xio # x/o. It follows from (1.6) that such io and )0 exist. Let Bio denote the
DC-brick with respect to a with difference <5, where 0" 1= IIx io - x/oil, and the
points x io and x/oare the vertices of the topmost row of B io . From (3.4) and
(3.5) we conclude that 0 ~ a . y < n<5 holds for any other vertex y in B io . We
now add ±/3ioBio to the set {Xl, ..., xm

} in the manner previously indicated,
i.e., with respect to (3.6). The sign is chosen so that the new coefficient of
x io is zero. Since B io has the Nl-property, we obtain a new set of points
{xl, ..., x';"} with the Nl-property. We note further properties:

(a) There exists a pIE~m,\{o} such that

m,
L /3:/;(a/.x;)=O

i= 1

for all /;: ~ -+ ~ and) = 1, ..., k.

(b) min{a.xil:/3:#O}~O.

(c) max {a . x; : /3: = O} ~ n <5.
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(d) The set of x; with P: of- 0 and a . X'I = n <5 is a strict subset of the
set of Xi with {J i of- 0 and a· Xi = n<5, since no new point has been added,
while x io has been discarded.

The new set of points may not have these properties in that we may have
alI the P: = O. If this is so, then we are finished and the theorem is proved.
We wish to show that it is this situation, after a. finite number of steps,
which must occur.

To this end we continue the above process. Since the number of points
Xi for which Pi of- °and a· Xi = n <5 is finite, we eventualIy reach a step I),
where

max {a . x;, : Mof- O} ;(; (n - 1) <5.

At this step we have identified the (given) set with the NI-property with
maximal level n as a sum of elementary bricks and a set with the NI
property with maximal level n - 1.

By repeating the process we may represent the original set as a sum of
elementary bricks and a set with the NI-property with maximal level k - 2.
From Lemma 3.2 we conclude that the latter can only be the (trivial)
configuration with each IJ, = O. Hence, we are done.

4. THE r-HEXAGON AND k = 3

In this section we completely classify all sets of points with the N1
property where we are given three distinct directions aI, a2, a3 in [R2. For
ease of notation we assume, as in Section 3, that a i = (sin 0;, -cos 0;),
i=I,2,3, where 0=01<02<03<n. The ai, a2, and a' are fixed
throughout this section. We also define the orthogonal directions
b l := (cos 0i' sin 8J

The basic building blocks of sets of points satisfying the NI-property are
not bricks, but a subset of hexagons. We calI a hexagon a regular hexagon
or an r-hexagon if its vertices satisfy the NI-property (with respect to
ai, a2, a'). There are r-hexagons, and we can characterize them in various
ways. One characterization, up to translation, is the folIowing. Let
A=(O,O), B=(O',O), F=(<5cos(}3,bsinO,), where 0',<5>0. (That is, A
and B lie on a line orthogonal to a I, and A and F lie on a line orthogonal
to a 3.) Then there is a unique r-hexagon containing the vertices A, B, and
F The remaining three vertices C, D, and E are determined as cutting
points of lines. C is the point of intersection of the line through B
orthogonal to a 2

, and the line through F orthogonal to a l
. E is the point

of intersection of the line through B orthogonal to a 3, and the line through
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)flO
F~C
A B

FIGURE 4.1
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F orthogonal to a 2
• Finally, D is the point of intersection of the line

through E orthogonal to ai, and the line through C orthogonal to a3 (see
Fig. 4.1).

For an algebraic representation observe that the vectors b l
, b2

, and b3

are linearly dependent, i.e.,

12b2 = I) b l + 13 b3
.

Since 0<02 <°3 , we have 1/,/2 ,13 >0. Set ii :=(JII I and b:=(jlt 3 • An easy
calculation shows that

A = 0, B= iit l b l
, C= iit l b l + bt2 b2

,

D = (ii + b) t 2 b 2
, E= iit 2 b2 + bt 3 b3

, F= bt 3 b3
.

We associate alternately the weights + 1 and -1 to the vertices,
A, B, C, D, E, F. It follows now that the points form a set with the NI
property. If (J and/or (j are negative, a similar construction may be per
formed, except in the case where ii = -b. In particular, assume we are
given three distinct points x, y, and z, and any permutation i, j, k of 1, 2, 3.
If a i

• x = a i
• y and a i . x = a i . z, then there is a unique r-hexagon containing

the points x, y, and z, as vertices, unless a k
• y = a k

• z. In general, any given
trapezoid with sides in the direction b l

, b2
, and b3

, which is not a
parallelogram may be completed to an r-hexagon by adding two points.

We will consider finite sums of r-hexagons. By this we mean exactly what
was meant by a finite sum of bricks. We conjecture that r-hexagons cannot
be represented as sums of bricks if the quotient iilb is an irrational number.
On the other hand, the converse is true.

LEMMA 4.1. Let ai, a 2
, a 3 be as above. Then any brick (based on

a I, a 2, a 3) is the sum of at most 4 r-hexagons.

Proof Let a, b, c, d, e, d, e, f, g, and h be the eight vertices of a brick as
shown in Fig. 4.2. At the first stage we add four new vertices I, m, n, 0 to the
above. Let m be any point on the line through band.f, i.e., line through
b or f in the direction b2

. Let 1 be the intersection of the line through d in
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FIGURE 4.2

the direction b2 and the line through m in the direction b '. Let n be the
intersection of the line through I in the direction b3 and the line through
c in the direction b2

. Let 0 be the intersection of the line through m in the
direction b3 and the line through n in the direction b '. It follows that 0

is also on the line through a in the direction b2
• Thus the points

a, b, c, d, I, m, n, and 0 satisfy the NI-property. In general, these eight
vertices are not vertices of a brick. They are the vertices of a brick with a
twist, a sort of "Escher brick." Moreover e, f, g, h, I, m, n, and 0 are
also the vertices of an "Escher brick," and our original brick (with its
appropriate weights) may be obtained as the difference of these two
"Escher bricks" with the appropriate weights.

Consider the "Escher brick" given by the vertices a, b, c, d, I, m, n, and 0

as obtained above. Depending on the placement of m it may look like
Fig. 4.3. Let p be the intersection of the line through nl and the line through
ab. Let q be the intersection of the line through om and the line through
cd. The vertices a, c, n, 0, p, q and the vertices b, d, I, m, p, q each form an
r-hexagon. Thus each "Escher brick" is the difference of two r-hexagons
with appropriate weights. This proves the lemma.

Remark. Any brick is actually the sum of at most three r-hexagons. But
the exact number is immaterial for our purpose and the proof is easier to
explain in the case of four r-hexagons. To see that it is the sum of at most
three r-hexagons, choose m = f or m = b in the above construction. In
this case the brick decomposes into the sum of an "Escher brick" and an
r-hexagon.

m

FIGURE 4.3
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The main result of this section is:
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THEOREM 4.2. Let ai, a 2
, a 3 be three distinct directions in 1R 2

• Then a set
of points {x I, ... , x m

} has the NI-property if and only if a subset of these
points may be obtained as a finite sum of r-hexagons.

Proof One direction is simple. We therefore assume that we are given
a set of points {x I, ... , xm

} with the NI-property. We wish to prove that it
contains a (non-trivial) subset which can be obtained as a finite sum of
r-hexagons. After reducing the set, if necessary, we may assume that
{x I, ... , xm

} has the M N I-property. By Proposition 1.1 there exists a vector
PE IRm, all of whose coefficients are non-zero integers, satisfying

m

I PJ;(a i . Xi) = 0
i~ I

(4.1 )

for all 1;: IR -+ IR, j= 1,2,3. To avoid ambiguities, we divide the P/s by
their common divisor, and set M:= L7'~ I IPJ We will call M the size of
the set of points.

Our proof will involve induction on M. The minimal M is M = 6 (see the
proof of Lemma 3.2), i.e., an r-hexagon. Thus for M = 6 the theorem holds.

In the proof of this theorem we will also use the concept of a cycle.
A cycle is similar to a closed path as given in Definition 2.1. The q distinct
points Xi" ... , x iq (from the {Xi} 7'~ I) form a cycle if there exist Ii E {1, 2, 3 },
j = I, ... , 2r, such that

af}. Xl] = all. xl}+ " j= t, ..., q

(here we set iq + I := it and tq + 1:= td where

and j= 1, ..., q. (4.2)

Cycles exist since they may be constructed using arguments in the proof of
Theorem 2.1.

We associate with a cycle given by the points xii, ..., X i2
, the vector of

weights (sgn Pi" ..., sgn P i2J The length of a cycle is the number of vertices
or sides, i.e., q in the above. We will sometimes consider a cycle from the
point of view of the consecutive directions, i.e., (a", ... , all,) in the above
example.

The idea of the proof of Theorem 4. t is the following. If there is a cycle
of length 4, we show how to decrease the size M, and thus show the result
by induction on M. If there is no cycle of length 4, we show how to alter
a cycle so that either M is decreased, or M remains constant, but the length
of the cycle is decreased. In this way we eventually decrease M since we will
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arrive at a cycle of length 4. Of course, all changes made involve adding
r-hexagons.

The proof of the theorem is somewhat lengthy and technical. For this
reason we divide it by separating out one more lemma.

LEMMA 4.3. Assume that the {xi}7~ 1 as above contain a cycle of
length 4. Then we can add r-hexagons so as ta decrease the size M.

Proof If there exists a cycle of length 4 then we label its vertices by
x I, x 2, x 3, x 4. After choosing the starting point of the cycle we may assume
that the directions {aQI

, ••• ,aQ4
} have either the form {ai,ai,ai,ai } or

{a\ ai, a\ ail, where the {i, j, k} are a permutation of {I, 2, 3 }.

Case 1. aiaiaia i . The Xl, x 2
, x 3

, x 4 are the vertices of a parallelogram.
Let k E { 1,2, 3 }\ {i, j}. Along the line through x 1 in the direction a\ there
exists an x', IE {5, ..., m} with 13,131 < O. There is a unique brick containing
the vertices Xl, x 2

, x 3
, x 4

, and x'. It is obtained by translating the vertices
x I, Xl, x-', x 4 in the direction a k so that x I is mapped onto x'. This brick
contains three new vertices. Multiplying by -I, if necessary, we can
assume that the weight at the vertex x' is - sgn Pi' for i = 1,2,3,4, I. We
add this brick to our original set. Each Pi' iE {I, 2, 3,4, I}, is reduced by
I in absolute value, while three (perhaps) new vertices have been added
with weights I in absolute value. The size of this new set is therefore at
most M - 2. Applying Lemma 4.1 proves this case.

Case 2. aia'aka'. The points Xl, Xl, x-', x4 are the vertices of a
trapezoid. From the construction of r-hexagons at the beginning of this
section we know that we can obtain an r-hexagon by adding two vertices.
From (4.2) we conclude that, after multiplication by -I if necessary, the
weight at the vertex Xi is - sgn Pi' i = 1,2,3,4. Adding this r-hexagon to
our original set, we simultaneously decrease the size M by 4, while
increasing it by at most 2 (because of the additional two vertices of the
r-hexagon). Therefore, also in this case the size of the new set is at most
M-2.

Proof of Theorem 4.2 (Continued). In order to complete the induction
argument via the size M, it is necessary that we consider the case where all
cycles are of length at least 6. Let C be a cycle of minimal length. In the
first two cases we wilI consider four consecutive directions in C and show
how to alter C so that M is decreased, or we obtain a cycle of length less
than the length of C. In what folIows i, j, k represent any permutation of
1,2,3.

Case I. aia'aiak. Let Xl, Xl, x 3
, x 4

, x 5 be the five consecutive vertices
connected via the above directions, respectively. That is, a'· x I = a i

. Xl,
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aJ
• Xl = ai . x 3

, etc.... We claim that there is a (unique) r-hexagon contain
ing the vertices Xl, x 3

, x 4
. We have ai . Xl = a i . x 3 and a i . x 3 = a i . x4. Such

an r-hexagon exists unless a k
• x 2 = a k

. x 4
. However, if a k

. x 2 = a k
• x 4

, then
since a k

• x 4 = a k
. x 5

, it follows that a k
• x 2 = a k

• x 5 and thus there is a cycle
exactly like the cycle C except that we replace X I, x 2

, x 3
, x 4

, x 5 by x I, Xl, x 5.

However, this contradicts the minimality of the length of C.
Now, if x I or x 5 is a vertex of this r-hexagon, then adding (or subtract

ing) this r-hexagon to our original set reduces the size M by at least 2, and
we can apply the induction argument.

Assume that neither x I nor x 5 is a vertex of this r-hexagon. From the
construction of the r-hexagon there exists a vertex y satisfying a i

. x 2 = a i
. y

and a k
• x4 = a k

. y. Adding (or subtracting) this r-hexagon does not
increase the size M. (We subtract at least 3 and add at most 3 to M.)
However, such an addition (subtraction) permits us to replace Xl, x 2

,

x 3
, x 4

, x 5 in the cycle C by Xl, y, x 5
. (Note that a i . x 1= a i . x 2 = a i . y and

a k
. y = a k

. x 4 = a k
. x 5

.) Thus the cycle of minimal length of this new set is
at least 2 less than it was.

Case 2. a iaiaiai. Let Xl, Xl, x 3, x4, x 5 be as in Case 1, i.e., ai . Xl = ai . x 2,

a i . Xl = a i . x 3
, etc.... We construct a brick containing the vertices x 2

, x J
, x 4

as follows. First, let y satisfy a i ·x 2 =a i .y and a i .x 4 =a j ·y. The
x 2

, x 3
, x 4

, yare the vertices of a parallelogram. From (4.1) there exists an
Xl, IE{I, ...,m}\{3} such that f33f3I<O and ak ·x 3 =ak ·x /. From the
position of x 3 vis-a-vis x 2 and x 4

, we have that IIf {2, 4}. Furthermore
11f{1,5} since f33f3I>O and f33f3S>O. Thus IE{6, ...,m}. There exists a
brick containing the vertices x 2

, x3, x 4
, y, and Xl. (If y = Xl, the resulting

brick is an r-hexagon. The argument remains the same.) We obtain this
brick by translating the parallelogram with vertices x 2

, x 3
, x 4

, y in the
direction bk so that x 3 is projected onto Xl. We add (or subtract) this brick
to our original set. Since at least four vertices of the brick were part of
the original set, with weights of the appropriate sign, the size M is not
increased. If M is decreased, we are finished. Assume M is not decreased.
Thus y is neither x 1 nor x 5. Now a i

. x 1= a i
• x 2 = a i

• y, and a j
. y = a j

. x 4 =

a j
· x 5

. We can therefore replace Xl, x 2
, x3, x 4

, X
S in the cycle C by Xl, y, X

S

(the signs alternate as they must). We thus reduce the minimal length by
at least 2.

Case 3. Assume that a minimal cycle C does not contain four con
secutive directions as given by Cases 1 or 2 (recall that there is no starting
point or forward or backward to C). The only remaining case is therefore
given by C of the form ..., ai, ai, a k , ai, ai, ak, ... , i.e., repeats of ai, ai, a k

.

Let ai
. x 1= ai

. Xl, a i . x 2 = a i . x 3
, a k

. x J = a k
. x 4

, eeL.. There exists
a brick (which may reduce to an r-hexagon) containing the vertices
x 2

, x 3
, x 4

, x 5. The remaining four vertices yl, y2, y3, y4 are constructed as
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follows. Let y' satisfy a i ·x3=a i .yl and a k .x 5=ak .y'. Let y2 satisfy
a i ·x2=a i .y2 and a i .yl=a i .y2. Let y3 satisfy a i .x 5 =a j ·y3 and
a k . y2 = a k • y3. Let y4 satisfy a k . x2= a k • y4 and a j

. x4= a j
. y4. Or alter

natively, define y I as above and translate the parallelogram with vertices
x 3, x4

, x 5, yl in the direction bl so that x 3 projects onto x 2
. Then yl

projects onto y2, x5 projects onto y3, and x4 projects onto y4. This brick
may reduce to an r-hexagon. However, this has no real effect on the argu
ment. Adding (or subtracting) this brick does not increase M. If M is not
decreased, then x I #- y2 and XO #- y3. In .this case Xl, y2, y3, XO can replace
XI,X2,X3,X4,X5,X6 in the above cycle. In this way the length of the
minimal cycle is decreased.
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